Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(16): 10902-10911, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606667

RESUMO

The practical application of high-energy density lithium-oxygen (Li-O2) batteries is severely impeded by the notorious cycling stability and safety, which mainly comes from slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at cathodes, causing inferior redox overpotentials and reactive lithium metal in flammable liquid electrolyte. Herein, a bifunctional electrode, a safe gel polymer electrolyte (GPE), and a robust lithium anode are proposed to alleviate above problems. The bifunctional electrode is composed of N-doped carbon nanotubes (N-CNTs) and Co4N by in situ chemical vapor deposition self-catalyzed growth on carbon cloth (N-CNTs@Co4N@CC). The self-supporting, binder-free N-CNTs@Co4N@CC electrode has a strong and stable three-dimensional (3D) interconnected conductive structure, which provides interconnectivity between the active sites and the electrode to promote the transfer of electrons. Furthermore, the N-CNT-intertwined Co4N ensures efficient catalytic activity. Hence, the electrode demonstrates improved electrochemical properties even under a large current density (2000 mA g-1) and long cycling operation (250 cycles). Moreover, a highly safe and flexible rechargeable cell using the 3D N-CNTs@Co4N@CC electrode, GPE, and robust lithium anode design has been explored. The open circuit voltage is stable at ∼3.0 V even after 9800 cycles, which proves the mechanical durability of the integrated GPE cell. The stable cable-type Li-air battery was demonstrated to stably drive the light-emitting diodes (LEDs), highlighting the reliability for practical use.

2.
Poult Sci ; 103(4): 103458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350384

RESUMO

The industry of egg-type chicken has shown a trend of extending the rearing period, with the goal of breeding chicken breeds capable of producing 500 qualified eggs by 700 d of age. However, the rapid decline in eggshell quality during the late laying period is one of the major challenges. In this study, a total of 3,261 Rhode Island Red chickens were used to measure eggshell quality traits including eggshell strength (ESS), eggshell thickness (EST), eggshell color (ESC) and eggshell gloss (ESG) at seven age points ranging from 36 to 90 wk of age. Phenotypic variations increased with the aging process, especially during the late laying period (> 55 wk), and the heritability during this period decreased by 22.7 to 81.4% compared to the initial and peak laying periods. Then we performed genome-wide association study (GWAS) to identify the genomic variants that associated with eggshell quality, with a custom Illumina 50K BeadChip, named PhenoixChip-I. The results indicated that 2 genomic regions on GGA1(23.24-25.15Mb; 175.95-176.05 Mb) were significantly (P < 4.48E-06) or suggestively (P < 8.97E-05) associated with ESS, which can explain 9.59% and 0.48% of the phenotypic variations of ESS46 and ESS36, respectively. Three genes, FRY, PCNX2, and ENSGALG00000052468, were considered to be the candidate genes for ESS. For other traits, the genome-wide suggestive SNPs were identified at each age point, exhibiting a certain trend with aging process. Additionally, SNP enrichment analysis and functional annotation of cross-tissue regulatory elements to ESS36 revealed a high concentration of enhancer elements specific to shell gland and kidney tissues. This study, deepened our knowledge of eggshells and laying a valued scientific foundation for chicken molecular breeding.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Estudo de Associação Genômica Ampla/veterinária , Galinhas/genética , Casca de Ovo , Óvulo , Fenótipo
3.
iScience ; 26(4): 106426, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37020956

RESUMO

The genetic improvement of economic traits suggests that chicken is an excellent model for exploring the genetic changes and molecular mechanisms underlying phenotypic diversity and artificial selection. Here, the sequencing data including 477 samples from 25 breeds worldwide were used to reveal the genomic patterns of chicken domestication. We analyzed 7.4 Tb clean data with 14.8× per individual to identify 23,504,766 SNPs, 3,289,782 InDels, and 27,027 SVs. The diversity analysis indicates that high-intensity artificial selection would accelerate population differentiation. We also found that the human-driven traits are controlled by polygenes and major genes, such as the primary candidates SOX5 and IGF1 for body size, and NEDD4 for sperm storage capacity. Our findings provide an important reference for understanding how genomic patterns shape phenotypes in livestock.

4.
Poult Sci ; 102(4): 102393, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805401

RESUMO

Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Feminino , Galinhas/genética , Peso Corporal/genética , Ingestão de Alimentos/genética , Ração Animal/análise
5.
Front Vet Sci ; 9: 868602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433899

RESUMO

This study aimed to evaluate the effects of the spontaneous genetic mutation T329S in flavin-containing monooxygenase 3 (FMO3) on atherosclerosis (AS), fatty liver syndrome (FLS), and adiposity in 90-week-old layers. At 90 weeks of age, 27 FMO3 genotyped Rhode Island White chickens (consisting of nine AA hens, nine AT hens, and nine TT hens) with normal laying performance were selected. The AS lesions, incidence of FLS, fat deposition, metabolic characteristics, and production performance of these egg-layers with different FMO3 genotypes were assessed. The T329S mutation in TT hens reduced the AS lesions (P < 0.01) and altered the plasma metabolic indices more than it did in the AA and AT hens. Furthermore, it reduced the incidence of FLS, hepatic triglyceride deposition (P < 0.05), liver indices (P < 0.05), and fat deposition (P < 0.05) in the subcutis and abdomen of TT hens compared to those of AA and AT hens. Moreover, as an effect of T329S, TT hens laid a higher than average number of eggs and maintained a higher egg-laying rate from 68 to 90 weeks than AA and AT hens. Our study confirmed that the T329S mutation in FMO3 could reduce the development of AS lesions, the incidence of FLS, and fat deposition, which are associated with changes in plasma and hepatic metabolic indices and improvements in the laying performance of older layers. Our results may provide a new strategy for using the T329S mutation to improve the health status and production performance of layers during the late laying period.

6.
Angew Chem Int Ed Engl ; 61(2): e202113086, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664355

RESUMO

Solid-state zinc (Zn) batteries offer a new candidate for emerging applications sensitive to volume, safety and cost. However, current solid polymeric or ceramic electrolyte structures remain poorly conductive for the divalent Zn2+ , especially at room temperature. Constructing a heterogeneous interface which allows Zn2+ percolation is a viable option, but this is rarely involved in multivalent systems. Herein, we construct a solid Zn2+ -ion conductor by inducing crystallization of tailored eutectic liquids formed by organic Zn salts and bipolar ligands. High-entropy eutectic-networks weaken the ion-association and form interfacial Zn2+ -percolated channels on the nucleator surfaces, resulting in a solid crystal with exceptional selectivity for Zn2+ transport (t Zn 2 + =0.64) and appreciable Zn2+ conductivity (σ Zn 2 + =3.78×10-5  S cm-1 at 30 °C, over 2 orders of magnitude higher than conventional polymers), and finally enabling practical ambient-temperature Zn/V2 O5 metal solid cells. This design principle leveraged by the eutectic solidification affords new insights on the multivalent solid electrochemistry suffering from slow ion migration.

7.
Poult Sci ; 100(7): 101104, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34051407

RESUMO

The microbiota of female reproductive tract have attracted considerable attention in recent years due to their effects on host fitness. However, the microbiota throughout the chicken oviduct and its symbiotic relationships with the host have not been well characterized. Here, we characterized the microbial composition of six segments of the reproductive tract, including the infundibulum, magnum, isthmus, uterus, vagina and cloaca, in pedigreed laying hens with phenotypes of egg quality and quantity. We found that the microbial diversity gradually increased along the reproductive tract from the infundibulum to the cloaca, and the microbial communities were distinct among the cloaca, vagina and four other oviductal segments. The magnum exhibited the lowest diversity, given that the lysozyme and other antimicrobial proteins are secreted at this location. The results of correlation estimated showed that the relationship between host genetic kinship and microbial distance was negligible. Additionally, the genetically related pairwise individuals did not exhibit a more similar microbial community than unrelated pairs. Although the egg might be directly contaminated with potential pathogenic bacteria during egg formation and oviposition, some microorganisms provide long-term benefits to the host. Among these, we observed that increased abundance of vaginal Staphylococcus and Ralstonia was significantly associated with darker eggshells. Meanwhile, vaginal Romboutsia could be used as a predictor for egg number. These findings provide insight into the nature of the chicken reproductive tract microbiota and highlight the effect of oviductal bacteria on the process of egg formation.


Assuntos
Galinhas , Microbiota , Animais , Tubas Uterinas , Feminino , Oviductos , Oviposição
8.
Adv Sci (Weinh) ; 8(9): 2003887, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33977057

RESUMO

Solid-state lithium battery promises highly safe electrochemical energy storage. Conductivity of solid electrolyte and compatibility of electrolyte/electrode interface are two keys to dominate the electrochemical performance of all solid-state battery. By in situ polymerizing poly(ethylene glycol) methyl ether acrylate within self-supported three-dimensional porous Li1.3Al0.3Ti1.7(PO4)3 framework, the as-assembled solid-state battery employing 4.5 V LiNi0.8Mn0.1Co0.1O2 cathode and Li metal anode demonstrates a high Coulombic efficiency exceeding 99% at room temperature. Solid-state nuclear magnetic resonance results reveal that Li+ migrates fast along the continuous Li1.3Al0.3Ti1.7(PO4)3 phase and Li1.3Al0.3Ti1.7(PO4)3/polymer interfacial phase to generate a fantastic conductivity of 2.0 × 10-4 S cm-1 at room temperature, which is 56 times higher than that of pristine poly(ethylene glycol) methyl ether acrylate. Meanwhile, the in situ polymerized poly(ethylene glycol) methyl ether acrylate can not only integrate the loose interfacial contact but also protect Li1.3Al0.3Ti1.7(PO4)3 from being reduced by lithium metal. As a consequence of the compatible solid-solid contact, the interfacial resistance decreases significantly by a factor of 40 times, resolving the notorious interfacial issue effectively. The integrated strategy proposed by this work can thereby guide both the preparation of highly conductive solid electrolyte and compatible interface design to boost practical high energy density all solid-state lithium metal battery.

9.
Poult Sci ; 100(5): 101044, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743497

RESUMO

With the development of molecular genetics and high-throughput sequencing technology, genotyping arrays consisting of large numbers of SNP have raised great interest in animal and plant research. However, the application of commercial chicken 600K SNP arrays has varied in different populations of egg-type chickens. Moreover, their genotyping cost is too high for large-scale population applications. Herein, we independently developed a custom Illumina 50K BeadChip, named PhenoixChip-I, for egg-type chickens based on SNP from 479 sequenced individuals in 7 lines. We filtered and selected SNP with stringent criteria, such as high polymorphism, genome coverage, design score, and priorities. Finally, a total of 43,681 effective SNP successfully genotyped were included on our custom array. Approximately 14K SNP were previously reported to be associated with important economic traits in egg-type chickens. Subsequently, we verified the applicability and efficiency of the PhenoixChip-I SNP array from many aspects, including evaluating its use scientific research (population structure analysis and genome-wide association study) and the poultry breeding industry (genomic selection). The findings in our study will play a crucial role in accelerating the genetic improvement of egg-type chickens.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Estudo de Associação Genômica Ampla/veterinária , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único
10.
BMC Genet ; 20(1): 67, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412760

RESUMO

BACKGROUND: Egg production is the most economically-important trait in layers as it directly influences benefits of the poultry industry. To better understand the genetic architecture of egg production, we measured traits including age at first egg (AFE), weekly egg number (EN) from onset of laying eggs to 80 weeks which was divided into five stage (EN1: from onset of laying eggs to 23 weeks, EN2: from 23 to 37 weeks, EN3: from 37 to 50 weeks, EN4: from 50 to 61 weeks, EN5: from 61 to 80 weeks) based on egg production curve and total egg number across the whole laying period (Total-EN). Then we performed genome-wide association studies (GWAS) in 1078 Rhode Island Red hens using a linear mixed model. RESULTS: Estimates of pedigree and SNP-based genetic parameter showed that AFE and EN1 exhibited high heritability (0.51 ± 0.09, 0.53 ± 0.08), while the h2 for EN in other stages varied from low (0.07 ± 0.04) to moderate (0.24 ± 0.07) magnitude. Subsequently, seven univariate GWAS for AFE and ENs were carried out independently, from which a total of 161 candidate SNPs located on GGA1, GGA2, GGA5, GGA6, GGA9 and GGA24 were identified. Thirteen SNP located on GGA6 were associated with AFE and an interesting gene PRLHR that may affect AFE through regulating oxytocin secretion in chickens. Sixteen genome-wide significant SNPs associated with EN3 were in a strong linkage disequilibrium (LD) region spanning from 117.87 Mb to 118.36 Mb on GGA1 and the most significant SNP (rs315777735) accounted for 3.57% of phenotypic variance. Genes POLA1, PDK3, PRDX4 and APOO identified by annotating sixteen genome-wide significant SNPs can be considered as candidates associated with EN3. Unfortunately, our study did not find any candidate gene for the total egg number. CONCLUSIONS: Findings in our study could provide promising genes and SNP markers to improve egg production performance based on marker-assisted breeding selection, while further functional validation is still needed in other populations.


Assuntos
Galinhas/genética , Ovos , Estudo de Associação Genômica Ampla , Genoma , Fenótipo , Reprodução/genética , Animais , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
11.
Poult Sci ; 98(12): 7076-7089, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424521

RESUMO

For healthy development, an avian embryo needs the nutritional and functional molecules maternally deposited in avian eggs. Egg white not only provides nutritional components but also exhibits functional properties, such as defenses against microbial invasion. However, the roles of the more detailed messages in embryo development remain unclear. In this study, a tandem mass tag labeling quantitation approach was used to innovatively identify the differential proteins in the egg whites of fresh eggs produced by hens with divergent high/low hatchability and in the egg whites of embryonated eggs with healthy and dead embryos. A total of 378 proteins were quantified in egg white, which is the most complete proteome identified for egg white to date, and up to 102 differential proteins were identified. GO enrichment, pathway, and hierarchical clustering analysis revealed some of the differential proteins that are the main participants in several biological processes, including blood coagulation, intermediate filament, antibacterial activity, and neurodevelopment. A list of 11 putative protein biomarkers, such as keratin (KRT19, KRT12, KRT15, and KRT6A), which is involved in cell architecture, and fibrinogen (fibrinogen alpha chain, fibrinogen beta chain, and fibrinogen gamma chain), which is related to blood coagulation, were ultimately screened. The current study screened egg white proteins that can predict low hatchability and embryonic death and deciphered the role of these proteins in embryonic development, which is meaningful for the comprehensive understanding of embryonic growth.


Assuntos
Embrião de Galinha/embriologia , Galinhas/fisiologia , Proteínas do Ovo/química , Proteômica/métodos , Animais , Embrião de Galinha/fisiologia , Proteínas do Ovo/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino
12.
Sci Rep ; 8(1): 10832, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018363

RESUMO

With the extension of the egg-laying cycle, the rapid decline in egg quality at late laying period has aroused great concern in the poultry industry. Herein, we performed a genome-wide association study (GWAS) to identify genomic variations associated with egg quality, employing chicken 600 K high-density SNP arrays in a population of 1078 hens at 72 and 80 weeks of age. The results indicated that a genomic region spanning from 8.95 to 9.31 Mb (~0.36 Mb) on GGA13 was significantly associated with the albumen height (AH) and the haugh unit (HU), and the two most significant SNPs accounted for 3.12 ~ 5.75% of the phenotypic variance. Two promising genes, MSX2 and DRD1, were mapped to the narrow significant region, which was involved in embryonic and ovary development and found to be related to egg production, respectively. Moreover, three interesting genes, RHOA, SDF4 and TNFRSF4, identified from three significant loci, were considered to be candidate genes for egg shell colour. Findings in our study could provide worthy theoretical basis and technological support to improve late-stage egg quality for breeders.


Assuntos
Galinhas/genética , Ovos/análise , Variação Genética , Estudo de Associação Genômica Ampla , Animais , Proteínas de Ligação ao Cálcio/genética , Casca de Ovo/química , Desenvolvimento Embrionário/genética , Feminino , Desequilíbrio de Ligação , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Locos de Características Quantitativas , Receptores OX40/genética , Proteína rhoA de Ligação ao GTP/genética
13.
Front Genet ; 9: 128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755503

RESUMO

Egg weight (EW) is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS) in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80). Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb) in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A) can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1) and two genes (MEIS1 and SPRED2 on GGA3), which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW) and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.

14.
Poult Sci ; 97(2): 397-402, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140467

RESUMO

Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers.


Assuntos
Criação de Animais Domésticos/economia , Galinhas/genética , Genômica/métodos , Modelos Genéticos , Animais , Cruzamento , Feminino
15.
BMC Genomics ; 16: 843, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26492869

RESUMO

BACKGROUND: Copy number variation (CNV) is a major source of genome polymorphism that directly contributes to phenotypic variation such as resistance to infectious diseases. Lines 63 and 72 are two highly inbred experimental chicken lines that differ greatly in susceptibility to Marek's disease (MD), and have been used extensively in efforts to identify the genetic and molecular basis for genetic resistance to MD. Using next generation sequencing, we present a genome-wide assessment of CNVs that are potentially associated with genetic resistance to MD. METHODS: Three chickens randomly selected from each line were sequenced to an average depth of 20×. Two popular software, CNVnator and Pindel, were used to call genomic CNVs separately. The results were combined to obtain a union set of genomic CNVs in the two chicken lines. RESULTS: A total of 5,680 CNV regions (CNVRs) were identified after merging the two datasets, of which 1,546 and 1,866 were specific to the MD resistant or susceptible line, respectively. Over half of the line-specific CNVRs were shared by 2 or more chickens, reflecting the reduced diversity in both inbred lines. The CNVRs fixed in the susceptible lines were significantly enriched in genes involved in MAPK signaling pathway. We also found 67 CNVRs overlapping with 62 genes previously shown to be strong candidates of the underlying genes responsible for the susceptibility to MD. CONCLUSIONS: Our findings provide new insights into the genetic architecture of the two chicken lines and additional evidence that MAPK signaling pathway may play an important role in host response to MD virus infection. The rich source of line-specific CNVs is valuable for future disease-related association studies in the two chicken lines.


Assuntos
Galinhas/genética , Variações do Número de Cópias de DNA/genética , Resistência à Doença/genética , Doença de Marek/genética , Animais , Galinhas/virologia , Suscetibilidade a Doenças , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Marek/virologia
16.
BMC Genomics ; 15: 962, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25378104

RESUMO

BACKGROUND: Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. RESULTS: A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. CONCLUSIONS: Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.


Assuntos
Galinhas/genética , Variações do Número de Cópias de DNA/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Mapeamento Cromossômico , Cromossomos/genética , Análise por Conglomerados , Hibridização Genômica Comparativa , Ontologia Genética , Polimorfismo Genético , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
17.
PLoS One ; 9(8): e104652, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133774

RESUMO

Insertion and deletion (INDEL) is one of the main events contributing to genetic and phenotypic diversity, which receives less attention than SNP and large structural variation. To gain a better knowledge of INDEL variation in chicken genome, we applied next generation sequencing on 12 diverse chicken breeds at an average effective depth of 8.6. Over 1.3 million non-redundant short INDELs (1-49 bp) were obtained, the vast majority (92.48%) of which were novel. Follow-up validation assays confirmed that most (88.00%) of the randomly selected INDELs represent true variations. The majority (95.76%) of INDELs were less than 10 bp. Both the detected number and affected bases were larger for deletions than insertions. In total, INDELs covered 3.8 Mbp, corresponding to 0.36% of the chicken genome. The average genomic INDEL density was estimated as 0.49 per kb. INDELs were ubiquitous and distributed in a non-uniform fashion across chromosomes, with lower INDEL density in micro-chromosomes than in others, and some functional regions like exons and UTRs were prone to less INDELs than introns and intergenic regions. Nearly 620,253 INDELs fell in genic regions, 1,765 (0.28%) of which located in exons, spanning 1,358 (7.56%) unique Ensembl genes. Many of them are associated with economically important traits and some are the homologues of human disease-related genes. We demonstrate that sequencing multiple individuals at a medium depth offers a promising way for reliable identification of INDELs. The coding INDELs are valuable candidates for further elucidation of the association between genotypes and phenotypes. The chicken INDELs revealed by our study can be useful for future studies, including development of INDEL markers, construction of high density linkage map, INDEL arrays design, and hopefully, molecular breeding programs in chicken.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Animais , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Ontologia Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA